I B.Tech - I Semester - Regular / Supplementary Examinations November 2017

INTRODUCTION TO ELECTRICAL CIRCUITS (ELECTRONICS \& COMMUNICATION ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A
Answer all the questions. All questions carry equal marks
$11 \times 2=22 \mathrm{M}$
1.
a) State Kirchoff's laws.
b) A Capacitor has a capacitance of $5 \mu \mathrm{~F}$.Calculate the stored energy in it if a voltage of 100 V is applied across it.
c) Define reluctance and magnetic flux.
d) A 20 H choke with a resistance of 180Ω has a $300 \mathrm{~V}, 50 \mathrm{~Hz}$ supply, Calculate the energy stored.
e) Define the average value and root mean square value of an alternating quantity.
f) The voltage applied to a series circuit is $100 \sin \left(\omega t+10^{\circ}\right)$ and the current is $10 \sin \left(\omega t-30^{\circ}\right)$. Find the circuit parameters.
g) A 4Ω resistor is connected to a 10 mH inductor across a $100 \mathrm{~V}, 50 \mathrm{~Hz}$ voltage source. Find the impedance of the circuit and the input current.
h) What is power factor? What is its significance?
i) Define resonance and bandwidth.
j) A coil is at resonance at 10 kHz with a capacitor. If the resistance and inductance of the coil are 200Ω and 5 H , find the Q factor of the series RLC circuit.
k) A current 10 A flows into a circuit consisting of $2 \Omega, 4 \Omega$, 10Ω and 20Ω resistances respectively in parallel. Determine the total amount of power in the circuit.
PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2.a) Determine the current drawn by the circuit shown in figure 1.

10 M

Figure 1
b) Determine the current through 6Ω resistor in the figure 2 .

6 M

Figure 2
3.a) Determine the average value, R.M.S value of the waveform shown in figure 3.

Figure 3
b) Obtain the R.M.S value, average value, peak factor and form factor of the sinusoidal current whose amplitude is 10A.

6 M
4.a) Derive the relation between self-inductance, mutual inductance and coefficient of coupling.
b) An iron ring of 8 cm diameter and $14 \mathrm{~cm}^{2}$ in cross- section is wound with 250 turns of wire for a flux density $1.8 \mathrm{~Wb} / \mathrm{m}^{2}$ and permeability 450 . Find the exciting current, the inductance and stored energy. Find the corresponding quantities when there is a 1.8 mm air gap.
5.a) An inductive coil takes 10 A and dissipates 1000 W when connected to a supply of $250 \mathrm{~V}, 25 \mathrm{~Hz}$. Calculate
(i) The impedance
(iii) Reactance
(ii) The effective resistance
(v) The power factor.
(iv) Inductance
8 M
b) Derive an expression for current response in R-L series circuit with a sinusoidal source.
6.a) A series RLC circuit consists of a 50Ω resistance, 0.2 H inductance and $10 \mu \mathrm{~F}$ capacitor with an applied voltage of 20 V . Determine the resonant frequency. And also, find the Q factor of the circuit. Calculate the lower and upper frequency limit and also the bandwidth of the circuit. $\quad 8 \mathrm{M}$
b) A series resonating circuit has $\mathrm{R}=1 \mathrm{k} \Omega$, half power frequencies of 10 kHz and 90 kHz . Determine the bandwidth and the resonant frequency. Calculate the inductance and capacitance of the circuit.

8 M

